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Reaction-Convection in Incompressible 3D-Fluid:
A Homogenization Problem

Mark Freidlin1,2
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We consider reaction-convection in a stationary incompressible flow which is close
to a planar motion. Under certain conditions, we introduce the notion of relative en-
tropy for such a deterministic flow to describe the motion of the spot occupied by an
ingredient.
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1. STATEMENT OF THE PROBLEM

We will consider a stationary motion of incompressible 3-D fluid, which
is close to a planar motion (see [5]). As is known, 2D-incompressible fluid can
be described by the stream function ψ(x1, x2). The velocity field of such a fluid
V (x1, x2) = ∇̄ψ(x1, x2) = (− ∂ψ

∂x2
,

∂ψ

∂x1
).

Consider now 3D-fluid with the velocity

V ε(x) = ∇̄ψ(x) + εb(x), x ∈ R3.

Here ∇̄ψ(x) = (− ∂ψ

∂x2
,

∂ψ

∂x1
, 0), div b(x) = 0, 0 < ε << 1. We assume that

b(x) = (b1(x), b2(x), b3(x)) is continuously differentiable and derivatives are
bounded uniformly in x ∈ R3. Moreover, let b3(x) ≥ β > 0, and b3(x1, x2, x3) ≡
b3(x1, x2, x3 + 2π ).

It is clear that the motion with velocity V ε(x), on any finite time interval
[0, T ], is close to the planar motion as ε << 1. To observe the displacements of
order 1 as ε ↓ 0, one should rescale the time t → t

ε
.
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If an ingredient is put in the fluid which moves together with the fluid and
takes part in a chemical reaction, the evolution of the ingredient density, after an
appropriate time rescaling, is described by the equation

∂uε(t, x)

∂t
= 1

ε
∇̄ψ(x) · ∇uε + b(x) · ∇uε + f (uε) = Lεuε + f (uε), (1)

uε(0, x) = g(x) ≥ 0, Supp g = G0

The function f (u) in (1) describes the reaction, g(x) is the initial density of
the ingredient. Let f (u) be of the Kolmogorov-Petrovskii-Piskunov (KPP) type:
f (u) = c(u)u, c(u) < 0 for u > 1 and c(u) > 0 for u < 1, c(0) = c = max c(u);
c(u) is assumed to be Lipschitz continuous.

The stream function ψ(x1, x2) is assumed to be smooth enough, say, has three
continuous derivatives, lim|x |→∞ ψ(x) = ∞ and ψ(x) is generic. The latter means
that ψ(x) has a finite number of critical points, and each of them is non-degenerate.
Let, for brevity, ψ(x) have different values at different critical points.

One can expect that, because of the periodicity of b3(x1, x2, x3) in x3, a ho-
mogenization effect in the motion along x3-axis will appear: a constant asymptotic
speed of the flow in x3-direction will be established for large distances and small
ε; the propagation of the ingredient has an asymptotic speed.

It worth mentioning that the reaction term, say, of KPP type in a first order
equation does not change the area where the ingredient is situated at a time t . It just
changes the value of the ingredient’s density in the area where particles are brought
by the flow. So that, for each ε > 0, a certain domain exists where the ingredient
situated at time t (where the solution uε(t, x) of problem (1) is positive). But this
domain is, very sensitive to changes of ε, and, in general, no limit of uε(t, x) exists
as ε ↓ 0.

On the other hand small random perturbations are always available in the
system. So that a more realistic model should include not just motion of the
ingredient particles together with the flow, but also a small diffusion term, then
equation (1) should be replaced by the following:

∂uε,κ (t, x)

∂t
= κ

2

∑
ai j (x)

∂2uε,κ

∂xi∂x j
+ 1

ε
∇̄ψ(x) · ∇uε,κ + b · ∇uε,κ + f (uε,κ )

= Lε,κuε,κ + f (uε,κ ), uε,κ (0, x) = g(x). (2)

Here (ai j (x)) is the diffusion matrix, which for simplicity is considered diagonal
and independent of x ; 0 < κ << 1.

It turns out that the double limit, first, as ε ↓ 0 and then as κ ↓ 0, of uε,κ (t, x),
under some natural assumptions, exists, and one can calculate the effective speed
of the flow and of the ingredient in x3-direction. This limit turns out independent of
the diffusion matrix (ai j (x)) (assuming that it is non-degenerate). So that the effec-
tive velocities should be considered as characteristics of the reaction-convection
problem. The diffusion term is used just for a regularization (compare with [1], [5]).
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The diffusion process X ε,κ
t corresponding to the operator Lε,κ in (2) has a fast

and a slow components as ε ↓ 0. The fast component which, roughly speaking,
coincides with the basic planar motion, can be characterized by the invariant
measure of the Hamiltonian system Ẋ = ∇̄ψ(x) on the level set component of the
stream function ψ(x). At each t > 0, this level set component is defined by the
position of the slow component of X ε,κ

t . This slow component is the projection
Y (X ε,κ

t ) of X ε,κ
t on a space �, which is the product of a graph � related to ψ(x)

and R1 (such spaces are called open book) (see [6]).
The process Y ε,κ

t = Y (X ε,κ
t ) on � converges weakly in the space of con-

tinuous function ϕ : [0, T ] → �, T < ∞, as, first, ε ↓ 0, and then κ ↓ 0, to a
stochastic process Yt on �. The process Yt is deterministic inside each page of �

and has stochastic behavior just when Yt comes to the binding of the open book �.
It is important to note that the limiting process Yt on � is the same for different

diffusion matrices (ai j ). So that the stochasticity of Yt is an intrinsic property of
the deterministic system [5]. The independence of the asymptotic speed (of the
interface between the areas where the density of the ingredient is close to 1 and
to zero) of the matrix (ai j ) is a manifestation of the fact that the process Yt is
independent of (ai j ).

If the stream function has, just one minimum, the graph � consists of one half
line I = {z : z ≥ minx∈R2 ψ(x)} and � = I × R1 has just one page. The limiting
process Yt , in this case, has no stochasticity, and the reaction term does not change
the evolution of the area occupied by the ingredient as ε, κ ↓ 0. We consider this
case in the next section.

In section 3, we study the case of stream functions with saddle points. Then
the limiting slow motion Yt is stochastic, and the asymptotic speed in x3-direction
is defined by the law of large numbers. Central limit theorem can be used to
describe the deviations from the motion with effective speed.

The evolution of the area occupied by the ingredient in the case of stream
function with saddle points is defined by the large deviations from typical behavior
of Yt . These large deviations are characterized by the relative entropy. We calculate
the speed of the ingredient propagation under certain symmetry assumptions. We
also give a sketch of the result in general situation.

In the last section 4, we study the behavior of ingredient on large
time intervals when t ∼ κ−1/2. In this time scale, the motion of the spot
occupied by the ingredient depends on the diffusion matrix (ai j ). We de-
scribe this motion using large deviation estimates for processes with a small
diffusion.

2. NO-SADDLE-POINTS CASE

Let ψ(x), x ∈ R2, have just one minimum at O . Then the trajectories of
corresponding 2D-flow are periodic and each of them belongs to a level set of
ψ(x). Put C(z) = {x ∈ R2 : ψ(x) = z}; let G(z) be the domain bounded by C(z).
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The period of rotation along C(z) denote by T (z):

T (z) =
∮

C(z)

dl

|∇ψ(x)| ,

where dl is the length element on C(z). The invariant density of the flow on C(z)
is equal to mz(x) = (T (z)|∇ψ(x)|)−1, x ∈ C(z).

Let b1,2(x) = (b1(x), b2(x)), x1,2 = (x1, x2). Then the system governed by
the operator Lε from (1) has the form:

Ẋ ε
1,2(t) = 1

ε
∇̄ψ(X ε

1,2) + b1,2(X ε
1,2, X ε

3), Ẋ ε
3(t) = b3(X ε

1,2, X ε
3) (3)

This motion has a fast component, which is, actually, the motion along the
non-perturbed trajectory Ẋ ε

1,2 = 1
ε
∇̄ψ(X ε

1,2), and a two-dimensional slow compo-
nent, which can be described by the evolution of ψ(X ε

1,2(t)) = ψε
t and of X ε

3(t).
Taking into account that ∇ψ(x) · ∇̄ψ(x) = 0, we have:

ψε
t − ψε

0 =
∫ t

0
∇ψ(X ε

1,2(s)) · b1,2(X ε
1,2(s), X ε

3(s))ds,

X ε
3(t) − X ε

3(0) =
∫ t

0
b3(X ε

1,2(s), X ε
3(s))ds.

Standard averaging principle implies (see references in section 7.1 of [6]) that
the slow component (ψε

t , X ε
3(t)) converges uniformly on any finite time interval

[0, T ] as ε ↓ 0 to (Z (t), Y (t)), where (Z (t), Y (t)) is the solution of the system

Ż (t) = 1

T (Z (t))

∮
C(z(t))

∇ψ(v) · b1,2(v)

|∇ψ(v)| dl,

Ẏ (t) = 1

T (Z (t))

∮
C(z(t))

b3(v)

|∇ψ(v)|dl (4)

Put

A(z, y) =
∫

G(z)
b3(x1, x2, y)dx1dx2.

Using the divergence theorem, one can see that∮
C(z)

∇ψ(v) · b1,2(v, y)

|∇ψ(v)| dl =
∫

G(z)
div1,2b1,2(x1,2, y)dx1dx2,

where div1,2b1,2(x1, x2, y) = ∂b1
∂x1

(x1,2, y) + ∂b2
∂x2

(x1,2, y). Taking into account that

divb(X ) = 0, we can deduce that div1,2b1,2(x1,2, y) = − ∂b3
∂y (x1,2, y), then the right

hand side of the first of equations (4) is equal to

− 1

T (z)

∂ A(z, y)

∂y
.
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One can check that ∮
C(z)

b3(x1,2, y)

|∇ψ(x1,2)|dl = ∂

∂z
A(z, y)

So that system (4) can be written as follows{
Żt = − 1

T (Zt )
A

′
y(Zt , yt )

ẏt = 1
T (Zt )

A
′
z(Zt , yt )

(5)

The function A(z, y) is a first integral of system (5). Because of our assumptions
on b3(x),

A(z, y) > 0, A
′
z(z, y) > 0, A(z, y + 2π ) ≡ A(z, y), lim

z→∞ A(z, y) = ∞. (6)

Consider the graph of A(z, y). Since the function is 2π -periodic in y, we draw
it over the cylinder (Fig. 1) of radius 1. Put m = A(ψ0, x3(0)). Then A(ψt , x3(t)) =
m for all t ≥ 0. The solution of system (5) is periodic in t and goes along the
projection

∑
m = {(z, y) : A(z, y) = m} of the m-level set of A(z, y) over the

cylinder (Fig. 1). One rotation along this curve
∑

m takes time

τm =
∮

∑
m

T (z)dl

|∇ A(z, y)| .

Thus the asymptotic speed as ε ↓ 0 and t >> 1 is equal to νm = 2π
τm

. The reaction
term in this case will not change the speed. It can just change the density of the
ingredient particles.

Fig. 1.
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Fig. 2.

One should note that the domain occupied by ingredient for t > 0 and ε << 1,
in general, is rather irregular: since the flow is incompressible, the volume of the
domain {x ∈ R3 : uε(t, x) > 0} does not change, and, under generic assumptions,
the domain becomes more and more stretched as ε ↓ 0.

We will see that such a relatively simple expression for the time τm needed for
an ingredient particle to pass one period in the x3-direction is available, roughly
speaking, just in the case, when the stream function has no saddle points. In
the next section, we consider stream functions with one or more saddle points.
Then, if the corresponding

∑
m-curve cross the level H∗ of a saddle point (if

A(H∗, y) = A(ψ(x1(0), x2(0)), x3(0)) for some y ∈ [0, 2π ]), the asymptotic rota-
tion time becomes, in a sense, random, and the asymptotic speed is defined by a
law of large numbers.

3. MANY CRITICAL POINTS

Suppose now that the stream function ψ(x!, x2) of the basic planar motion
has saddle points. Let, for brevity, ψ(x) have just one saddle point O2 (Fig. 2),
and ψ(O2) = H∗.

The level set C(z) = {(x1, x2) ∈ R2 : ψ(x1, x2) = z}, in general, consists of
several connected components Ck(z): C(z) = ∪n(z)

k=1Ck(z). Let � be the graph home-
omorphic to the set of all connected components of the level sets of ψ(x) (Fig. 2b)
(compare with [6], [4]). For each Ck(z) one can introduce the period Tk(z) of ro-
tation along Ck(z) : Tk(z) = ∮

Ck (z) |∇ψ(x)|−1dl. We denote by Gk(z) the domain

in R2 bounded by Ck(z). A ∞-shaped curve γ (O2) = γ = {x ∈ R2 : ψ(x) =
ψ(O2)} is related to each saddle point O; γ = γ (O2) is shown in Fig. 2. Let G2

and G3 be the domains bounded by this curve (Fig 2d ).
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Fig. 3.

Let all the edges of � be numbered. Each point y ∈ � is defined in the unique
way by the number of edge containing y and by the value of stream function ψ on
the level component corresponding to y. Denote by H : R2 → � the projection
of R2 on �: H (x1, x2) is equal to y ∈ � corresponding to the level component
containing (x1, x2); H (x1, x2) = (ψ(x1, x2), k(x1, x2)) ∈ �, here k(x1, x2) is the
number of the edge containing y.

Let � = � × R1 and define a map ∧ : R3 → �, ∧(x1, x2, x3) =
(H (x1, x2), x3) = (ψ(x1, x2), k(x1, x2), x3) (see [5]). The space � is called an
open book. For example, in the case of the stream function ψ shown in Fig. 2, the
space � is shown in Fig. 3. It has 3 pages and a binding {O2} × R1.

If the stream function has saddle points, the speed in x3-direction can be
sensitive to small change of ε, and the limit as ε ↓ 0 may not exist. On the other
hand a small noise (small diffusion) is always available in the system, So that
we replace the dynamical system (3) governing the motion of the particles by a
diffusion process with small diffusion coefficients:

Ẋ ε,κ
t (t) = 1

ε
∇̄ψ(X ε,κ

t ) + b(X ε,κ
t ) + √

κσ Ẇt (7)

Here σ is a diagonal matrix with constant non-zero entries, Wt is the three di-
mensional Wiener process, 0 < κ << 1. The process X ε,κ

t is governed by the
differential operator Lε,κ , introduced in (2), with a = σ 2.

We will see that after such a regulazation, there exists a limit of x3-component
of the process X ε,κ

t as ε ↓ 0. Moreover, if after that we take κ ↓ 0, the double limit
is independent of the diffusion matrix a. Note that addition of a small diffusion
term makes also more regular the domain occupied by the ingredient at time t > 0
(under some minor additional assumptions).
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The process X ε,κ
t also has a fast and a slow components as ε ↓ 0. the

fast component is again the deterministic motion along the trajectories of the
system Ẋt = 1

ε
∇̄ψ(Xt ), and the slow component is the projection ∧(X ε,κ

t ) =
(ψ(X ε,κ

t ), k(X ε,κ
t ), X ε,κ

3 (t)) of X ε,κ
t on the open book �.

Let (z, k) ∈ �, and (z, k) is not an interior vertex. Define

Ak(z, y) =
∫

Gk (z)
b3(x1, x2, y)dx1dx2,

where Gk(z) ∈ R2 is the domain bounded by Ck(z). As in the no-saddle-points
case, Ak(z, y) > 0, ∂ Ak

∂z (z, y) > 0, Ak(z, y) = Ak(z, y + 2π ). If (H∗, k) = O2 is
an interior vertex (this means that H−1(O2) contains a saddle point O2) (See
Fig 2), and ψ(O2) = H∗, the set Gk(H∗) is bounded by an ∞-shaped curve
corresponding to O2. It consists of two parts G2 and G3 (see Fig. 3d ). We put

A2(H∗, y) =
∫

G2

b3(x1, x2, y) dx1dx2, A3(H∗, y) =
∫

G3

b3(x1, x2, y) dx1dx2,

A1(H∗, y) = A2(H∗, y) + A3(H∗, y).

On each page Ik × R1, Ik ⊂ �, define an operator Lκ
k :

Lκ
k ν(z, y) = 1

Tk(z)
∇̄ Ak(z, y) · ∇ν + κ

2Tk(z)

[
∂

∂z

(
D1

k (z)
∂

∂z

)
+ D2

k (z)
∂2ν

∂y2

]
,

The coefficients Ak(z, y) are defined above, and

D1
k (z) =

∫
Gk (z)

(
a11

∂2ψ(x1, x2)

∂x2
1

+ a22
∂2ψ(x1, x2)

∂x2
2

)
dx1dx2, D2

k (z) = a33Tk(z).

(8)
Let ∧κ

t = (Z κ
t , kκ

t , yκ
t ) be the Markov process on � governed by the operators

Lκ
k inside the pages and satisfying the following gluing conditions on the binding

{O2} × R1 of the open book �: a continuous on � and smooth inside the pages
up to their boundary function νk(z, y), y ∈ R1, (z, k) ∈ �, belongs to the domain
of definition of the generator A of the process ∧κ

t , if the function Lκ
k νk(z, y) is

continuous on � and satisfies the following condition on the binding {O2} × R1

D1
2(O2)

∂ (2)ν2(z, y)

∂z
+ D1

3(O2)
∂ (3)ν3(z, y)

∂z

+ (
D1

2(O2) + D1
3(O2)

)∂ (1)ν1(z, y)

∂z

∣∣∣∣
z=ψ(O2)

= 0,

where ∂ (k)νk (z,y)
∂z is the derivative in z on the page Ik × R1, k ∈ {1, 2, 3}; the coef-

ficients D1
k (O2) are defined by formulas (8) with Gk(z) replaced by domains Gk ,

k ∈ {2, 3}, G1 = G2 ∪ G3, bounded by the ∞-shaped curve corresponding to the
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vertex O2 (Fig. 2). If the graph � has more than one interior vertex, the gluing
conditions on corresponding part of the binding are formulated in a similar way.

One can prove that there exists a unique diffusion process ∧κ
t on � governed

by the operators Lκ
k and these gluing conditions ([5],[6]). Note that if b(x) ≡ 0,

such a process has independent components (zκ (t), kκ (t)) and yκ (t). The process
(zκ (t), kκ (t)) is the diffusion process on � with corresponding gluing conditions
(compare with [6],[4]); yκ (t), in this case, is just an one-dimensional diffusion
process. Addition of the term b(x) leads to an absolute continuous change of
measures (Girsanov’s transformation) in the space of trajectories. This allows to
prove existence of the process ∧κ

t and to calculate the gluing conditions.
It follows from [5], [7] that process ∧(X ε,κ

t ) = (ψ(X ε,κ (t)), k(X ε,κ
t ), X ε,κ

3 (t))
on � converge weakly in the space of continuous function [0, T ] → � as ε ↓ 0
to the process ∧κ

t on � defined above.
Define now one more stochastic process ∧t = {zt , kt , yt } on the open book

�: Inside each page Ik × R1 ⊂ �, process ∧t is deterministic and is defined by
equations

żt = − 1

Tk(zt )

∂ Ak

∂y
(zt , yt ), ẏt = 1

Tk(zt )

∂ Ak

∂z
(zt , yt )

where

Ak(z, y) =
∫

Gk (z)
b3(x1, x2, y)dx1dx2.

When the trajectory ∧t comes to the binding, say from page 1 on Fig. 3 to a point
(O2, y) ∈ {O2} × R1, and ∂ Ai

∂y (H∗, y) > 0, i ∈ {2, 3}, then ∧t goes, without delay
and independently of the past, to page 2 or 3 respectively with probabilities

P2(y) =
∂ A2
∂y (H∗, y)

∂ A2
∂y (H∗, y) + ∂ A3

∂y (H∗, y)
, P3(y) = 1 − P2(y).

It follows form the definition of A(H∗, y) that, if the trajectory ∧t comes to a point
y of the binding from page 1, then at least one of the derivatives ∂ A2

∂y (H∗, y) or
∂ A3
∂y (H∗, y) is positive. If just one of derivatives ∂ Ai

∂y (H∗, yt ), i ∈ {2, 3} is positive
∧t goes to the corresponding page with probability 1. These conditions define
process ∧t in the unique way. The point (O2, y) ∈ {O2} × R1 is uniquely defined
by the value of A1(H∗, y), so that we can consider P2 and P3 as functions of A1:
P2 = P̃2(A1), P3 = P̃(A1).

It follows from [5] that the process ∧κ
t converge weakly as κ ↓ 0 to ∧t on

any finite time interval [0, T ]. Note that process ∧t independent of the matrix
a = σσ ∗. Thus the stochasticity of ∧t is an intrinsic property of deterministic
flow. The additional diffusion is used just for regularization of the problem.
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Fig. 4.

Assume that 2π -periodic functions Ak(H∗, y), k ∈ {1, 2, 3} have the follow-
ing symmetry property: Ak(H∗, π − y) = Ak(H∗, π + y), where H∗ = ψ(O2)
is the value of stream function at the saddle point (Fig 2). Then, of course,
functions Ak(H∗, y) have critical points at y = 0 and at y = π . We assume
that these functions have no other critical points, and that y = 0 is the mini-
mum and y = π is the maximum point. We will refer to these properties as
Assumption S.

Let the support of the initial function be concentrated near a point
(x0

1 , x0
2 , y0) ∈ R3, z0 = ψ(x0

1 , x0
2 ), and let, to be specific, z0 > H∗. If A1(z0, y0) >

max0≤y≤2π A1(H∗, y), then the particles “do not feel" the saddle point, and the
limiting slow motion is as in the no-saddle-point case.

Let now A1(z0, y0) < max0≤y≤2π A1(H∗, y) and the Assumption S be satis-
fied. Then the limiting slow motion will go along the curve γ1 = EBC (Fig. 4).
The curve γ1 is defined by equation

A1(z, y) = A1(z0, y0), z ≥ H∗.

When the slow trajectory comes to the level z = H∗ (to the binding of the open
book in Fig. 3) it can go to page 2 or 3 with probability P2(y∗) and P3(y∗) =
1 − P2(y∗) respectively. On page i ∈ {2, 3}, it moves along the curve γi defined
by equation

Ai (z, y) = Ai (H∗, y∗), z < H∗.

The curve γ2 in Fig. 4 is C D2E and γ3 is C D3E .
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The time to pass the curve γi , i ∈ {1, 2, 3}, is equal to

Ti =
∫

γi

Ti (z)dl

|∇ Ai (z, y)| . (9)

Because of Assumption S, all three curves γ1, γ2, γ3 connect the same points
(H∗, y∗) and (H∗, 2π − y∗). This means that every interval [y0 + 2πl, y0 +
2π (l + 1)] the trajectory of limiting slow motion goes along γ1 + γ2 or along
γ1 + γ3 with probabilities P2(y∗) and P3(y∗) respectively, independently of the
motion on other such intervals. Therefore the time to go in x3-direction from y0

to y0 + 2π N is equal to the sum of independent identically distributed random
variables τ1 + τ2 + . . . + τN , where

τi =
{

T2 + T1, with probability P2(y∗),
T3 + T1, with probability P3(y∗).

The average speed (without reaction term) of the fluid in x3-direction is, according
to the law of large numbers

2π N

τ1 + . . . + τN
= 2π

1
N

∑N
1 τi

→ 2π

Eτi

= 2π

T1 + T2 P2(y∗) + T3 P3(y∗)
= ν(ψ(x0

1 , x0
2 ), y0

0 ), as N → ∞.

Note that this speed is independent of the diffusion matrix a. If Suppg = G0, the
spectrum of asymptotic speeds along x3-axis is equal to

∪(x0
1 ,x0

2 ,y0)∈G0
ν(ψ(x0

1 , x0
2 ), y0).

So that, for large t , the spot is stretching in x3-direction between t · min(x0
1 ,x0

2 ,x0
3 )∈G0

ν(ψ(x0
1 , x0

2 ), x0
3 ) and t · max(x0

1 ,x0
2 ,x0

3 )∈G0
ν(ψ(x0

1 , x0
2 ), x0

3 ). The density of the ingre-
dient will decrease to preserve the total amount of ingredient (in the case f ≡ 0).

When a reaction term of K P P-type is included in equation, the spot oc-
cupied by ingredient, as a rule, moves faster than without this term, because of
multiplication of the particles. This effect is a manifestation of large deviations for
sums of independent (if Assumption S is satisfied) random variables. In the case
of one saddle point (Fig. 3, 4), the random variables have just two values. In this
case the action functional for large deviation asymptotics is equal to the relative
entropy (Fig. 5) [2].

H (α) = Hy∗ (α) = α ln
α

P2(y∗)
+ (1 − α) ln

1 − α

1 − P2(y∗)
.

In this case

lim
N→∞

N−1 ln P{in N Bernoulli trials with success probability P2(y∗) occurs

αN success} = −H (α).
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Fig. 5.

It follows from the Feynman-Kac formula that the solution uε,κ (t, x) of
problem (2) satisfies the equation

uε,κ (t, x) = Ex g(X ε,κ
t ) exp

{∫ t

0
c
(
uε,κ

(
t − s, X ε,κ

s

))
ds

}
. (10)

Consider the equation

ν(t, z, k, y) = Ez,k,y ḡ(∧t ) exp

{∫ t

0
c(ν(t − s,∧s)) ds

}
, (z, k, y) ∈ �, (11)

ḡ(z, k, y) = 1

Tk(z)

∮
Ck (z)

g(x1, x2, y)dl

|∇ψ(x1, x2)| .

It is easy to check that since c(ν) is Lipschitz continuous, equation (11) has
a unique solution (compare with [3],Ch. 5). Actually, ν(t, z, k, y) is the solution,
maybe generalized, of the Cauchy problem

∂ν(t, k, z, y)

∂t
= 1

Tk(z)
∇̄ Ak(z, y) · ∇z,yν + f (ν).

inside the pages of the open book �, satisfying the gluing conditions on the
binding of the book and initial condition ν(0, k, z, y) = ḡ(z, k, y).

Using convergence of ∧(X ε,κ
t ) to ∧t as, first, ε and then κ tend to zero,

and equations (10), (11), one can prove that uε,κ (t, x) approaches ν(t,∧(x)) as
ε.κ ↓ 0 (compare with [4]). Note that the function ν(t,∧(x)) is independent of the
diffusion matrix a.

Since the nonlinear term f (u) = c(u)u is of KPP type, c(u) ≤ c(0) = c for
u ≥ 0. Then we derive from (11)that

ν(t, z, k, y) ≤ Ez,k,y ḡ(∧t )e
ct . (12)
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Let N = [ yt −y
2π

] be the integer part of yt −y
2π

. Then the trajectory ∧s =
(zs, ks, ys), 0 ≤ s ≤ t . visits the binding {O2} × R1 of the open book � (Fig. 4)
N times. Let γ (N ) be the number of times among those N , when ∧s goes from
page 1 to page 2 of �. Then

t = γ (N )(T1 + T2) + [N − γ (N )](T1 + T3) + ON (1), N → ∞,

where Ti , i ∈ {1, 2, 3}, are defined by (9).
Let the support G0 of the initial function g(x), x ∈ R3 be situated between

x3 = −m and x3 = 0, and let T2 > T3. Let α±, α− < α+, be the roots of equation
(Fig. 5).

cα(T1 + T2) + c(1 − α)(T1 + T3) = H (α). (13)

If T1 + T3 > − ln(1 − P2) put α− = 0, and if T1 + T2 > − ln P2 put α+ = 1. Note
that times Ti depend on the initial point u = (zo, ko, yo), therefore α± = α±(u).

Define

V− = min
u∈∧(G0)

2π

α+(u)(T1(u) + T2(u)) + (α−(u)(T1(u) + T3(u))
,

V+ = max
u∈∧(G0)

2π

α+(u)(T1(u) + T2(u)) + (α−(u)(T1(u) + T3(u))
.

Taking into account that the large deviation asymptotics for γ (N )
N , N → ∞, is

described by the action function N H (α), one can conclude that

lim
t→∞

1

t
ln Ez,k,βt ḡ(∧t )e

ct = −∞

if β /∈ [V−, V+]. Then (12) implies

lim
t→∞ max

z,k
ν(t, z, k, βt) = 0, if β /∈ [V−, V+].

On the other hand, using arguments similar to arguments used in section 6.2 of
[3], we can check that

lim
t→∞ max

z,k
ν(t, z, k, βt) = 1, if β ∈ (V−, V+).

Since limκ↓0 limε↓0 uε,κ (t, x) = ν(t,∧(x)), we come to the following result:

Theorem 1. Assume that the stream function ψ(x), x ∈ R2, has just one sad-
dle point O2, ψ(O2) = H∗. Let the perturbation b(x), x ∈ R3, has mentioned
above properties, in particular, divb(x) = 0, b(x1, x2, x3) ≡ b(x1, x2, x3 + 2π ),
and assumption S is satisfied.

Let the set G0 = Supp. g be connected , and the closure [G0] of
G0 coincides with the closure of its interior (G0): [G0] = [(G0)]. Assume
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that G0 ⊂ {(x1, x2, x3) : x3 ∈ [−m, 0]}; z0 = ψ(x0
1 , x0

2 ) > H∗, A1(∧(x0)) <

max0≤y≤2π A1(H∗, y), T2(A1(∧(x0))) > T3(A1(∧(x0))) for x0 ∈ G0.
Let f (u) = c(u)u be of KPP-type, and c = c(0), then

lim
t→∞ lim

κ↓0
lim
ε↓0

max
x1,x2

uε,κ (t, x1, x2, νt) =
{

1, if ν ∈ (V−, V+),
0, if ν /∈ [V−, V+].

In particular, if the ingredient is concentrated in a small neighborhood of
a point x0 ∈ R3, the asymptotic speed of the ingredient particles in x3-direction
without reaction is close to

ν̄ = 2π

P2(T1 + T2) + (1 − P2)(T1 + T3)
,

where P2 and Ti are calculated for A1 = A1(∧(x0)). The reaction term accelerates
the motion of the area occupied by particles and lead to stretching of this area in
x3-direction: the spectrum of speeds consists now of a small neighborhood of the
interval[

2π

α+(T1 + T2) + (1 − α+)(T1 + T3)
,

2π

α−(T1 + T2) + (1 − α−)(T1 + T3)

]
,

where α± and Ti are calculated for A1 = A1(∧(x0)). Of course, ν̄ belongs to this
interval. The spectrum of speeds becomes wider and wider as c = c(0) increases
up to max(ln P−1

2 , ln(1 − P2)−1). For c greater than this maximum, the interval is
equal to [ 2π

T1+T2
, 2π

T1+T3
].

We will finish this section with short remarks on general case, when
Assumption S is not satisfied. As before, we assume that the stream func-
tion has one saddle point O2, z0 = ψ(x0

1 , x0
2 ) > H∗ = ψ(O2), and A1(∧(x0)) <

max0<y≤2π A1(H∗, y).
Consider the circle {z = H∗, 0 ≤ y < 2π} = E (Fig. 6). Define continuous

mappings of E in itself. The mapping Fi : E → E , i ∈ {2, 3} is defined as fol-
lows: Consider the trajectory (zt , yt ) on the cylinder E × R1. First, the trajec-
tory starting at (z0, y0) comes to a point M0 ∈ E (see Fig. 6) along the curve
{A1(z, y) = A1(z0, y0)}. Then it goes along the curve γi defined by equation
Ai (z, y) = A1(z0, y0), i ∈ {2, 3}, until it comes back to E at a point Bi (M0). Then
it goes from Bi (M0) along the curve A1(z, y) = A1(H∗, Bi (M0)) to a point Mi

1 of
E , where the trajectory again cross the circle E . The map M0 → Mi

1, i ∈ {2, 3}, is
called Fi (M0). Without Assumption S, Fi (M0), in general, differs from M0. Each
time when the trajectory comes from above to E at a point M , it goes along γ2 or
γ3 with probabilities P2(M) and 1 − P2(M) respectively, independently of the past
behavior. So that from M trajectory goes to F2(M) or F3(M) with probabilities
P2(M) and 1 − P2(M). So that we have a Markov chain on E : in one step the
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Fig. 6.

chain jumps from M ∈ E to F2(M) or to F3(M) with probabilities P2(M) and
1 − P2(M) respectively. Let Ti (M), i ∈ {2, 3} the time which trajectory spends
for transition from M to Fi (M) if it uses curve γi . Under some natural additional
assumptions, the chain is ergodic and has a unique invariant measure λ(dy) on E .
Then the asymptotic speed of the spot occupies by the ingredient in x3-direction
is independent of the initial position of the spot and is equal to

ν̄ = 2π∫ 2π

0 [P2(y)T2(y) + (1 − P2(y))T3(y)]λ(dy)
.

Some sufficient conditions for ergodicity of the chain, one can derive from [8]. The
asymptotic speed of the ingredient when a KPP-type reaction term is included in
the equation can be described by the relative entropy for this chain, We are going
to consider these questions elsewhere.

4. PROPAGATION OF THE INGREDIENT IN A LARGER TIME SCALE

Until now we considered evolution of the domain occupied by the ingredient
as 0 < ε, κ << 1 in a large but finite time interval. Then the spot occupied by the
ingredient grows and moves in x3-direction and stays bounded in (x1, x2)-plane.
The evolution of the spot is independent of the diffusion matrix (ai j ).

Now, we consider the question of growth in (x1, x2)-plane. This growth
occurs when t tends to infinity as κ−1/2. For brevity, we restrict ourselves to the
case of stream function ψ(x) with just one critical point-minimum at the origin
O , ψ(O) = 0. The nonlinear term, as before, is of KPP-type. We assume that
the support G0 of the initial density g(x), x ∈ R3, is invariant with respect to
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shifts along x3-axis: G0 = G̃ × R1, where G̃0 is a bounded connected domain in
(x1, x2)-plane. Let Ḡ0 = {(z, y), y ∈ R1, z = ψ(x1, x2) for some (x1, x2) ∈ G̃}.

One can prove (compare with [4])that under our assumptions
limε↓0 uε,κ (t, x) = νκ (t,∧(x)) exists for t > 0, and νκ (t, z, y), z > 0, y ∈ R1,
is the solution of the problem

∂νκ (t, z, y)

∂t
= κ

2T (z)

(
D1(z)

∂2νκ

∂z2
+ D2(z)

∂2νκ

∂y2

)
+ 1

T (z)
∇̄ A(z, y) · ∇νκ

+ f (νκ ) = Lκνκ + f (νκ ), νκ (0, z, y) = ḡ(z, y) (14)

The coefficients D1(z), D2(z) in (14) and A(z, y) were defined in the previous
section. Note that since we assume that ψ(x) has no saddle points, the open book
� consists of one page in this case.

Let ν̃κ (t, z, y) = ν( t√
κ
, z, y). Then ν̃κ (t, z, y) satisfies to equation

∂ν̃κ

∂t
= 1√

κ
Lκ ν̃κ + 1√

κ
f (ν̃κ ), ν̃κ (0, z, y) = ḡ(z, y)

The diffusion process ∧̃κ
t , corresponding to the operator 1√

κ
Lκ , has a fast compo-

nent, which is the motion along the levels curve of A(z, y), and a slow component,
which is transversal to the level curves.

As it follows from the Feynman-Kac formula, the function ν̃κ (t, z, y) is the
solution of the equation:

ν̃κ (t, z, y) = Ez,y ḡ(∧̃κ
t ) exp

{
1√
κ

∫ t

0
c(ν̃κ (t − s, ∧̃κ

s ))ds

}
. (15)

Since c(ν) ≤ c(0), ∧̃κ (t, z, y) ≤ Ez,y ḡ(∧̃κ
t ) exp{ ct√

κ
}.

Consider the closed curve
∑

m = {(z, y) : A(z, y) = m, 0 ≤ y < 2π} (Fig.
1); One rotation along

∑
m takes time

τm =
∮

∑
m

T (z)dl

|∇ A(z, y)| .

Put ¯̄G0 = {a ∈ R1 : A(z, y) = a for some (z, y) ∈ Ḡ0}. If dτm

dm �= 0 for m ∈ ¯̄G0,
then the area where ν̃κ (t, z, y) is close to 1, for any t > 0 and κ ↓ 0, is invariant
with respect to shifts along the vector field ∇̄ A(z, y). This can be checked using
same arguments as in Theorem 3.1 from [3]. Similarly to [4], one can also show
that the probabilities of large deviations for the process A(∧κ

t ) as κ ↓ 0 are the

same as for the diffusion process ¯̄X
κ

t governed by the operator ¯̄L
κ =

√
κ

2
¯̄D(m) d2

dm2 ,
where

¯̄D(m) = 1

τm

∮
∑

m

(D(z)∇ A(z, y) · ∇ A(z, y))dl

T (z)|∇ A(z, y)| ,
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D(z) is the diagonal 2 × 2 matrix with the entries D1(z) and D2(z). The action

functional for the process ¯̄X
κ

t , 0 ≤ t ≤ T , as κ ↓ 0 in the space C0T of continuous
functions on [0, T ] has the form

1

κ
S0T (ϕ) =

{
1

2κ

∫ T
0

ϕ̇2
s ds

¯̄D(ϕs )
, if ϕ is absolutely continuous and ϕ0 = ¯̄X0;

+∞, for the rest of C0T .

Then the standard arguments (see Ch.6 in [3]) lead to the following result.

Theorem 2. Let the stream function ψ(x), x ∈ R2, have just one critical point-
minimum at the origin, lim|x |→∞ ψ(x) = ∞. Let Supp. g = G̃0 × {−∞,∞},
where G̃0 is a connected bounded domain in the (x1, x2)-plane, ¯̄G0 = {a ∈
R1 : A(ψ(x1, x2), x3) = a for some (x1, x2) ∈ G̃, x3 ∈ R1}. Let b(x), x ∈ R3, be
2π -periodic in x3, div b(x) = 0, and b3(x) ≥ b̄ > 0. Assume that dT (z)

dz �= 0 for

z = ψ(x1, x2), (x1, x2) ∈ G0, and dτm

dm �= 0 for m ∈ ¯̄G0. Introduce a distance ρ(·, ·)
in R1:

ρ(h1, h2) =
∣∣∣∣
∫ h2

h1

[
¯̄D(m)

]− 1
2

dm

∣∣∣∣ .
Then

lim
κ↓0

lim
ε↓0

uε,κ (
t√
κ

, x) =
{

1, if ρ(A(∧(x)), ¯̄G0) < t
√

2c;

0, if ρ(A(∧(x)), ¯̄G0) > t
√

2c.
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